Multivariate GARCH Models with Correlation Clustering
نویسندگان
چکیده
This paper proposes a new clustered correlation multivariate GARCH model (CCMGARCH) that allows conditional correlations to form clusters. This model can generalize the time-varying correlation structure in Tse and Tsui (2002) by determining a natural grouping of the correlations among the series. To estimate the proposed model, we adopt Markov Chain Monte Carlo methods. Two efficient sampling schemes for drawing discrete indicators are also developed. Simulations show that these efficient sampling schemes can save substantial computation time in Monte Carlo procedures involving discrete indicators. In the applications using stock market and exchange rate data, twocluster and three-cluster models are selected using posterior probabilities, implying that the conditional correlation equation should be governed by more than one set of decaying parameters.
منابع مشابه
Dynamic Conditional Correlation – a Simple Class of Multivariate Garch Models By
Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of returns. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models coupled with parsimonious parametric models for the correlations. They are not linear but can often be estim...
متن کاملGeneralized Dynamic Factor Model + GARCH Exploiting multivariate information for univariate prediction
We propose a new model for volatility forecasting which combines the Generalized Dynamic Factor Model (GDFM) and the GARCH model. The GDFM, applied to a large number of series, captures the multivariate information and disentangles the common and the idiosyncratic part of each series of returns. In this financial analysis, both these components are modeled as a GARCH. We compare GDFM+GARCH and ...
متن کاملCopula-based Multivariate GARCH Model with Uncorrelated Dependent Errors∗
Multivariate GARCH (MGARCH) models are usually estimated under multivariate normality. In this paper, for non-elliptically distributed financial returns, we propose copula-based multivariate GARCH (C-MGARCH) model with uncorrelated dependent errors, which are generated through a linear combination of dependent random variables. The dependence structure is controlled by a copula function. Our ne...
متن کاملRisk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models
H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...
متن کاملGarch Models of Dynamic Volatility and Correlation
Economic and financial time series typically exhibit time varying conditional (given the past) standard deviations and correlations. The conditional standard deviation is also called the volatility. Higher volatilities increase the risk of assets, and higher conditional correlations cause an increased risk in portfolios. Therefore, models of time varying volatilities and correlations are essent...
متن کامل